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This paper is part of a series treating the flow in a variable-area, rectangular duct 
which is rotating about an axis that is perpendicular to the duct’s centre-line and 
parallel to one pair of walls (sides). The speed of rotation is assumed to be sufficiently 
large that viscous effects are confined to boundary layers and free shear layers and 
that inertial effects are much smaller than viscous effects everywhere. Earlier papers 
present inertialess solutions for a prototype with parallel sides everywhere, parallel 
top and bottom upstream of a cross-section, and straight, symmetrically diverging 
top and bottom downstream of the same cross-section. The present paper presents 
inertial perturbations to the inertialess solutions for the prototype when the slope 
of the diverging top and bottom is small. This paper begins to bridge the gap between 
papers treating inertialess flows in ducts with arbitrary geometries and papers treating 
flows with significant inertial effects in ducts with restricted geometries. 

1. Introduction 
Flow in a duct which is rotating about an axis perpendicular to the duct’s centre- 

line is of interest because of its relationship to fluid motions in the atmosphere and 
the oceans, as well as to the flows inside turbomachinery impellers. A number of 
papers treat such a flow under the assumption that both the Rossby number R and 
the Ekman number E are small, so that the flow is inertialess and inviscid except in 
boundary layers and free shear layers. The solutions for the inertialess, inviscid core 
regions are determined by matching solutions in adjacent boundary and free shear 
layers, so that core solutions depend indirectly on inertial and viscous effects. The 
relative role of inertial and viscous effects in the boundary and free shear layers 
depends on the relationship between R, E and the duct’s geometry. 

The literature is divided into two groups of papers. One group assumes that the 
flow is inertialess everywhere, determines solutions for the viscous boundary and 
free shear layers and for the inviscid cores, and introduces these solutions into the 
inertia terms in the momentum equation in order to find the largest inertia term in 
any core or layer. For this inertia term to be negligible compared to the other terms 
in the momentum equation, as assumed at the beginning, a small-inertia restriction 
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must be satisfied. This restriction takes the form R < cEi, where the factor c and the 
exponent j depend upon the duct’s geometry. As long as cEi < 1, this restriction is 
more severe than the original assumption that R < 1. 

Jacobs (1964) treats the inertialess flow between two infinite, parallel walls which 
are perpendicular to the axis of rotation. On one wall there is a three-dimensional 
bump, e.g. a hemisphere, with height h = O( 1), compared to the distance between the 
walls. The fluid is stagnant in the cylinder above the bump and parallel to the axis of 
rotation, i.e. a Taylor column, while there is two-dimensional irrotational flow around 
the stagnant column. The small-inertia restriction for this flow is R < E4. Walls 
which are parallel to the axis of rotation and to the velocity far from the bump, i.e. 
sides, can be added to form a constant-area rectangular duct with a bump on its top 
or bottom. The basic characteristics of the flow and the small-inertia restriction are 
unchanged. 

Foster (1975) treats the inertialess flow past a similar bump on one of two infinite, 
parallel walls, but varies the dimension of the bump perpendicular to the axis of 
rotation and to the flow direction. As the width of the bump becomes very large, 
the flow goes over the bump, rather than around the stagnant column above it. The 
small-inertia restriction becomes more severe as the bump width increases, finally 
becoming R < E2 for flow over a very long ridge perpendicular to the flow direction. 
Sides can be added to form a constant-area rectangular duct, where now the flow is 
over the bump, and the restriction is R < EP, when the bump spans the duct from 
side to side. 

A second group of papers treats flow in which inertial and viscous effects are com- 
parable, but with restrictions on the geometry. The flows are confined by either two 
infinite, parallel walls, perpendicular to the axis of rotation, or by a constant-area, 
rectangular duct with one pair of walls (sides) parallel to the axis of rotation. There 
are two, symmetric bumps or ridges on the walls perpendicular to the axis of rotation 
(top and bottom), but the height of the bumps or ridges is small, h = K E ~ ,  while 
R = A&, where K and h are O(1) parameters. 

Boyer (1971) treats the two-dimensional flow between infinite walls with ridges of 
constant cross-section perpendicular to the flow direction. Huppert & Stern (1 974) 
add sides to Boyer’s geometry, where the addition of sides now makes a fundamental 
difference. Vaziri & Boyer (1 971) treat the three-dimensional flow past bumps either 
on infinite walls or on the top and bottom of a rectangular duct which is wider than 
the bumps. 

The present paper is the beginning of a bridge between the papers on inertialess 
flows with arbitrary geometry and the papers on inertial-viscous flows with restricted 
geometry. It is part of a series of papers treating flows in variable-area rectangular 
ducts which are rotating about axes perpendicular to their centre-lines and parallel 
to one pair of walls (sides). These flows are closely related to the flows past constant 
cross-section ridges which span constant-area, rectangular ducts. Solutions are pre- 
sented for a prototype with paraIle1 sides for all x, with parallel top and bottom up- 
stream (x < 0) and with straight, symmetrically diverging top and bottom downstream 
(x > 0) ,  where the x axis coincides with the duct’s centre-line (see figure 1). Part 1 
(Walker 1975) presents inertialess solutions for b = O(l) ,  where b is the slope of the 
diverging top and bottom. Part 1 also presents a method of constructing an inertialess 
solution for any duct with symmetrically diverging or converging top and bottom 
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FIGURE 1. The duct. 

All regions and stages: 4 = 31% = 1, 

Stage 1: E f  < b Q 1, 
Stage 2: b = aE*, 
Stage 3: E* -g b Q E f ,  
Stages 1, 2 ,  3: 8, = Eta-* 
Free shear layer: u = a/& = 1, w = a/ax = 8;l 
Intersection region: u = a/& = 88-1, w = a/ax = 8;1 
Side layer: u = alaz = 
Stage 4: b = p ~ + ,  u = a/az = I 
Near core : w = a/ax = 1, far core : w = a/ax = b 

v = bu 

8, = E*b-* 
8, = Ef 

8, = Etb-l  

w = a/ax = b 

TABLE 1. Orders of magnitude of derivatives and inertialess variables 
in each flow-carrying region for each stage (see figure 2). 

from the solutions for the prototype and discusses the extension of the analysis to 
ducts with symmetrically diverging or converging sides. Part 2 (Calderon & Walker 
1977) presents inertialess solutions for the prototype for small b. There are four 
stages between b = 1 and b = 0, and the values of b for each stage are given in table 1 
here. The solutions for the free shear layer at  x = 0 which are presented in part 2 are 
wrong, and the correct inertialess solutions for the free shear layer are presented in 
$ 3  of this paper. 

The present paper presents the inertial perturbations to the inertialess solutions 
for the prototype with small b. The small-slope ducts were chosen for two reasons. 
Analytical solutions are possible for small b,  while numerical solutions are required 
for b = 0(1), making the construction and interpretation of inertial perturbations for 
b = O( 1) much more complex. In  addition, the effect of a small slope is closely related 
to the /3 effect on fluid motions in the akmosphere and the oceans (Hseuh & Legeckis 
1973), so that the small-slope ducts are important in themselves. 

The inertialess solutions and the inertial perturbations are the first and second 
terms, respectively, in asymptotic expansions for small inertial effects, i.e. for 
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8 = R/cEj < 1. Therefore, the small-inertia restriction for each stage must still be 
satisfied, but now we have the first inertial correction to each inertialess solution. 

The inertial perturbations are useful in several ways. First, when inertial effects 
are, in reality, small, but not negligible, e.g. E = 0.1, then calculations based on the 
first two terms of the small-inertia asymptotic expansions are more accurate than 
those based on the inertialess solut,ions alone. Second, finding the inertial perturba- 
tions defines the small-inertia restriction for different values of b ,  namely 

R <  EM for b = O(1);  

R < E++b-* for Ea < b < 1 ;  

R < EH for b = aEf;  

R e  E f b 4  for E * < b <  E l ;  

R < E &  for b = p E * .  

The small-inertia restrictions given in parts 1 and 2 are wrong; it takes more than a 
casual look at  the inertialess solutions to determine the correct small-inertia restric- 
tions. Third, the inertial perturbations answer the question 'Do small inertial effects 
somehow accumulate over large duct lengths so that they are no longer negligible far 
downstream? '; the answer is no. Fourth, the inertial perturbations indicate what the 
inertial effects are in each subregion of the flow for each stage and the relative size 
of the inertial effects in different subregions. As we consider the possibility of relaxing 
the small-inertia restrictions, we know where the inertial effects first become com- 
parable to viscous effects, while the inertial perturbation in this subregion indicates 
qualitatively how solutions for comparable viscous and inertial effects will differ from 
inertialess solutions. At present, the solutions for stage 4, with b = pE* and R < E*, 
represent the closest link with the inertial-viscous solutions for restricted geometry 
presented by Boyer (1971) and by Huppert & Stern (1974). 

2. General considerations 
The flow considered here is incompressible and steady relative to a Cartesian co- 

ordinate system rotating a t  a constant angular velocity w = w? with respect to some 
inertial system. The dimensionless governing equations are 

V . V  = 0, R(v .V)V  = - V $ - ? X V + E V ' V ,  (1% b )  

where the reduced pressure $ includes the potential functions for the centrifugal and 
gravitational forces, as well as the pressure (Greenspan 1968, p. 6). Here 9 is a unit 
vector in they direction, vis the velocity, R = U / 2 o d  is the Rossby number, E = v/2udz 
is the Ekman number, U is a characteristic velocity, d is a characteristic length and 
v is the kinematic viscosity. The scalar components of equation ( 1  b )  are 

a $ p y  = E V ~ ~  - R ( V .  v )  v, 
u = &$/~z-EV'W+R(V.V)W,  ( 2 b )  

w = -a$/ax+EV'u-R(V.V)u,  ( 2 4  
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z = - 1  

3 I Free shear layer 
(a) 

z = - <  1 &E-:- 

( b )  ' Far core 

I 
I -  . 

c I 
- I Near core 

c 
I 

FIGURE 2. Horizontal sections at y = 0 showing the regions which carry the 0(1) flow and a. 
sketch of streamlines for (a) 1 % b % E i  (stages 1, 2 and 3) and (b )  b = p E t  (stage 4). 

while equations (1  a) ,  (2 b, c) give 

a v p y  = Evyaw/aX - au/az) + R a(v. v )  - R qv. v) W p X ,  

where u, v and w are the x ,  y and z components of v, respectively. 
The flow is confined by a pair of semi-infinite rectangular ducts joined at x = 0 to 

give a prototype with parallel sides at  z = f 1 for all x ,  parallel top and bottom at 
y = & a upstream ( x  < 0) and straight, diverging top and bottom at y = & (a  + bx) 
downstream ( x  > 0), where half the distance between the sides is chosen for d (see 
figure 1). For small divergences (b  < l) ,  the flow in the upstream, constant-area duct 
is fully developed, neglecting an O(b)  perturbation (Calderon & Walker 1977). Here 
we treat the flow in the downstream, variable-area duct, while the solution for fully 
developed flow is obtained by setting b = 0 in the solution for the fourth stage here. 
The average velocity at  x = 0 is chosen for U ,  so that the dimensionless solution must 
satisfy the total-flow condition 

udydz = 4a. (3) 

The boundary conditions are 

v = O  a t  y = f ( a + b x ) ,  z = f l .  (4a, b )  

We assume that E 4 1 and that R is sufficiently small that variables can be written 
as asymptotic expansions for small inertial effects, such as 9 = $o + + O(e2) ,  where 
#o and are the inertialess solution and first inertial perturbation, respectively, 
while E is a small parameter which equals R times some combination of E and b. 
The interior of the downstream duct can be divided into subregions, where this 
division depends on b. There are four stages between b = 1 and b = 0, and values of 
b for each stage are given in table 1. For the first three stages, the flow from the up- 
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stream duct enters a free shear layer which spans the duct a t  x = 0 and which has a 
thickness S, (see figure 2). The flow is carried by a large velocity to the side a t  z = 1, 
where the flow turns inside an intersection region and enters the side layer of thickness 
S, adjacent to the side at  z = 1. The fluid outside these regions in the downstream duct 
is essentially stagnant. The solutions for the side layer and intersection region, as 
well as the expression for S,, are different for each of the first three stages (see table 1). 
For stage 1, the Ekman pumping is not important in this layer and region, while the 
y variation of v is important; for stage 3, the reverse is true; for stage 2, both are 
important. For stage 4, the flow enters a near-core region a t  z = 0 and moves toward 
the side a t  z = 1 ; beyond the near core is a far core in which the flow evolves slowly 
with a/ax = E+. The orders of magnitude of the partial derivatives and the inertialess 
variables for each stage are given in table 1. 

Each of the regions shown in figure 2 is separated from the top and bottom at 
y = 2 ( a + b x )  by Ekman layers with O(E4) thickness. The well-known, inertialess 
solution for the Ekman layers satisfies the boundary conditions (4a)  and matches 
the solution in the adjacent region, provided the latter satisfies the Ekman conditions 
at y = f (a+ bx).  It turns out that O(E*bVv) and O(E+av /ay )  terms are negligible 
here, so that the Ekman conditions reduce to 

bu T v = (E/2)+ (aulaz- aw/ax) a t  y = f (a  + bx) ( 5 )  

(Greenspan 1968, p. 92). The Ekman Conditions ( 5 )  hold for the inertialess solutions 
in all subregions and for the inertial perturbations in those subregions for which the 
perturbations are much larger than those in the adjacent Ekman layers. It turns out 
that the inertial perturbations in certain E i  thickness side layers and in the adjacent 
Ekman layers are comparable, and a new Ekman condition must be derived for the 
inertial perturbations in these side layers (see 9 4 ) .  

The intersection region, side layer and cores are separated from the side by E+- 
thickness viscous Iayers. These layers satisfy the boundary conditions ( 4 b )  and match 
the variables in the adjacent region, as long as the latter satisfy the conditions 

u = w = O  at z = f l ,  (6) 

and v in the adjacent region is an odd function of y (Howard 1969). For stages 3 and 
4, the side layer, intersection region and cores are separated from the E* viscous layers 
by Et-thickness viscous layers. These layers satisfy the conditions (6) and match the 
variables in the adjacent regions, but make no contribution to the O( 1)  or O(s)  total 
flow. These viscous layers accept O( 1 )  or O(e) flow from the side layer or far core, but 
this flow is returned to these regions, via the Ekman layers, at the same cross-section 
that it enters the viscous layers and never contributes to the flow along the duct 
(Calderon & Walker 1977). Inertial perturbations in the E* and E* viscous layers 
adjacent to the sides are not considered here, unless they are larger than the inertial 
perturbations in adjacent flow-carrying regions. 

Our objective is to determine the inertial perturbation in each flow-carrying sub- 
region for each stage. For a given stage, the order of magnitude of the inertial terms 
is different in different subregions, raising the possibility that the largest inertial 
perturbation in a subregion arises from matching that in an adjacent subregion, 
rather than from its own inertial terms. However, it  turns out that, whenever one 
subregion’s perturbation is larger than its neighbour’s, it decays exponentially as we 
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go from one subregion to the other. Therefore, the largest inertial perturbation in 
each region arises from inertial terms in its governing equations, and E is different 
for each subregion and each stage. The present small-inertia expansion scheme holds 
only if the largest E for any subregion for a given stage is small, and this gives rise to 
the small-inertia restriction on R for each stage. 

For a given subregion and a given stage, the x and z co-ordinates in equations (2) 
and (5) are rescaled according to the orders of magnitude given for a/ax and 8/82 in 
table 1, so that the partial derivatives with respect to the rescaled co-ordinates are 
O( 1). Next, two-term expansions are introduced for each variable, where the order 
of magnitude of the inertialess term is given in table 1, and the inertial perturbation 
is the same, times E .  For example, in the intersection region for stage 1, 

u = Ed6*(u0 + EUJ,  v = E-*b+(v, + evJ, w = E-$b*(w, + E W ~ )  and q5 = q5,, + 
Setting E = R = 0, equations (2) become the equations governing the inertialess 
variables u,, v,, w, and q50, where most, if not all, of the viscous terms are negligible. 
With the inertialess variables in the terms with R and the inertial perturbations 
in the other terms, equations (2) determine E and become the equations governing 
the inertial perturbations ul, vl, w1 and $l. These equations are identical to the 
inertialess equations with inhomogeneous terms from (v, . V )  vo added. In  every case, 
$0, $1, uo, ul, wo and wl are independent of y, while vo and v1 are a t  most linear functions 
of y. The conditions (5) bceome equations governing q50 and (P1, and the other 
variables are given by derivatives of (Po and (PI. The condition (3) indicates that the 
total flow in the inertialess solution is 4a, while that in the inertial perturbation is 
zero. Calderon & Walker (1977) present inertialess solutions for the side layer, near 
core and far core. Here, we present inertialess solutions for the free shear layer and 
intersection region, as well as inertial perturbations for all flow-carrying regions. 

3. Free shear layer and intersection region 
Calderon & Walker (1977) present inertialess solutions for an Ei-thickness free 

shear layer and a corresponding intersection region for the first three stages, but it 
turns out that this layer and region do not occur for 6 < 1. Their layer consists of two 
semi-infinite, E i  layers on either side of x = 0, with an infinite Ef layer between them. 
The velocities u and w are continuous across the Ef layer, but v is not. The E* layer 
which can accommodate this jump in v is driven by singularities a t  y = 4 a, x = 0. 
These singularities are the E* x E* intersections of the upstream Ekman layers at 
y = f a and the downstream Ekman layers a t  y = _+ (a + bx) .  For 6 = O( l), the inter- 
secting Ekman layers have different O(E3) volume fluxes in the x direction, and this 
difference emerges into the Ef layer at the Ekman layer as a source or sink of fluid 
at these points (Walker 1975). However, for b < 1, the difference in the volume 
fluxes in the Ekman layers is much smaller, so that the strength of the singularities 
is too small to drive the Ef layer needed to accommodate the discontinuity in v in 
the two E i  layers. Calderon & Walker (1977) did not treat the Ef layer or the Ekman- 
layer intersections, and thus missed the error in their solution. They also failed to 
recognize that another, less severe type of free shear layer and accompanying inter- 
section region, with E i b a  thickness, is possible. Finally, they did not recognize the 
physically unacceptable characteristic of their solution that, for the first three stages, 
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their layer had Ei thickness; then, for stage 4, it suddenly changed to O( 1) dimension 
to become the near core. In  the present solution, the free shear layer evolves smoothly 
from E* thickness for b = O(l ) ,  through the first three stages, to the O(1) dimension 
of the near core for stage 4. 

The solution for the free shear layer is the same for stages 1, 2, 3. Equation (2) 
gives 

where i = 0 or 1; 
u, = a+,/az, wi = - a+i/ag, v, = -YA,, (7a, b, 4 

[ = E-abb, E = REdbi,  

A ,  = 0, A ,  = a(u, awo/ac+ W, aw,/az)/ag. 

The boundary conditions (5) now give 

The boundary conditions 
2-4 aZ$Jaf;2 - a+,/az = UA,. 

+, = z, $, = 0 a t  = 0, 

$,= -1, $ , = O  at z =  -1 ,  

#,+ -1, +1+0  as [+a, 

come from matching the upstream core, from the condition (6) at z = - 1, and from 
matching the stagnant downstream core, respectively. 

Since the boundary value problems governing q5i are simply the heat equation with 
appropriate boundary conditions, solutions can be obtained from well-known solu- 
tions. The problem governing $, is the same as one solved by Roberts (1967, p. 189), 
so that 

where 
$0 = - 1 + (1 + 2) [( 1 + 2q2) B, - 2qB,I, 

q = 2-$((I + z ) a ,  B, = erfc (q), B, = d e x p  ( -42) .  

Equations (7u, b )  now give u, and w,, which, through A,, give the inhomogeneous 
term in the equation governing 9,. A particular solution is obtained by combining 
elementary solutions until the inhomogeneous term is taken care of, and then a 
homogeneous solution is found which cancels any non-zero values of the particular 
solution et 5 = 0, z = - 1 and 5 + 03. The result is 

$hl = 2 - 4 4  1 + Z)* [qB1 - B, + 2q(BE - B?) + (1 - 2q2) B1B21. 

The inertialess velocities and their inertia1 perturbations are now given by equations 
(7). The largest velocities are wi, with wo carrying the total flow to the intersection 
region. The quantities (1 + 2)” w, and 2u-lw1 depend only on q, and these universal- 
profile functions are plotted in figure 3. For 0 < q < 0.35, w1 augments the inertialess 
flow, while, for q > 0.35, w1 decreases the inertialess velocity. 

The solution for the intersection region is different for each stage. For stage 1, 
equation (2) gives equation (7b) and 

where 
ui = a+i/ag, vi = -ya4$i/ag4+yci, 

6 = EAb*(z- 1), E = RE-SbQ, 

c, = 0, cl = a(u, au,/ag + w, au,/ag)/ag. 
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FIGURE 3. Transverse velocity for the free shear layer for stages 1, 2 and 3,  where 
w = E-*b*ww, + RE-Ibw,, and q = 2-iE-fbb( 1 + z)-*. 

It turns out that this is the largest E for this stage, so that the small-inertia restriction 
is R < EMb-) for stage 1. The boundary conditions ( 5 )  now give 

a44Ja~4  + a-1 a$i/a< = Ci. 
The boundary conditions 

4 0 - + 1 - ~ ( t ) ,  41+0 a5 c+ -00, (9% b)  

#o = 1,  #1 = 0, a#,/a[= 0 at c =  0 (9c, d, 4 
come from matching the free shear layer and boundary conditions (6) a t  z = 1, respec- 
tively, where 

which come from the free shear layer solution, evaluated a t  x = I .  

D/2  = 1 - (I + 2q2) B, + 2qB,, = 2-*5, 

The solution of the ordinary differential equation governing g50 is 

where 

F3 = 3 6  sin ( 3 f r ) ,  r = &a-*C. (10d ,  e) 

Equations (8a )  and ( 7 b )  now give uo and wo, which, through C,, give the inhomo- 
geneous term in the ordinary differential equation governing 4,. Again, particular 
and homogeneous solutions are combined to take care of both the inhomogeneous 
term and the boundary conditions; the result is 

4, = &a*DD’F1[3P1+(4r-3)F2-(4r+7)F3], 

where D’ = dD/dt.  The functions a h o / D  and u,/DD’ are universal profile functions 
of r only, but plots of these functions are not presented here. 

For the intersection region and for stage 2, equations ( 2 )  give equations (7b ,  8a) ,  
and 

ui = - y y i / a p  + ya+Ci, 
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where 
5 = E-*(z- i), 

Again, this is the largest E ,  so t.hat the small-inertia restriction is R < EB for stage 2. 
The boundary conditions (5) now give the ordinary differential equations 
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E = RE-4. 

a a 4 $ & ~ 4  - 2-4 az$ilap + a a$i/a[ = a&ci. 
The boundary conditions (9) still hold. 

a > a,, 

where 

The solutions depend upon the relationship between a and a, = (2*/27a)). For 

$0 = 1 - D + DGl(G2 - 81 G3/~2) 3 (1 1 4  

Q, = exp (81c), G, = cos (825), G3 = sin (s25), ( l l b ,  c, 4 
81 = 8+ f 8-, ( 1 l e , f )  8 2  = 34(8+ - 8-), 

8* = 2-4a4[a If: (a2- a;)4]&. 
For a < a,, 

where 
$0 = 1 -D+D(t+H-- t_H+)/ ( t+- t - ) ,  

tk = 2%(3a)d cos [Q(O f 2741, 

= exp ( t *<) ,  0 = 37r-arccos (a/.,). (1% 4 
Equation (8a)  now gives u,. For a > a,, u, is proportional to GlG3, so that the flow is 
alternately in the f x direction between the planes 5 = kn/s, for k = 1,2,3, , . . ; this 
is also true for both the intersection region and side layer for stage 1. For a < a,, u, 
is proportional to (H- - H+), so that the flow is in the + x direction for all 5; this is 
also true for both the intersection region and side layer for stage 3. 

Equation (7 b )  now gives w,, which, together with u,, determines the inhomogeneous 
term in the equation governing $l. Again, particular and homogeneous solutions are 
combined to take care of both the inhomogeneous term and the boundary conditions 
(9b ,  d ,  e ) .  For a > a,, 

$1 = & ~ ~ D D ’ G ~ [ ~ G J s ~ +  (45+835/as,- 3/81) G2- (6a~35+ 7/82+8,/mi)G3], 

83 = 2(a2 - &3-4/34. 
where 

For a < a,, 

where 
$1 = a4DD’[I,H+ H- + (J, [+ K+)  H- + (J- 5+ K-)  H+], 

J* = *[I -I- (2& f- 2.f2)/(3a- 24tr f &)I, 
& = * (J+ + 5 + .fl&F)/(f+ - L), 
Il = +(t++t-)-l, I’ = 34(at-a2)4. 

The velocities u, and u1 cannot be rescaled into universal profile functions for stage 2. 
The profile functions u,/D and UJDD‘ are functions of and involve two independent 
parameters a and a. 

For the intersection region and for stage 3, equations (2) give equations (7b, 8a) 
and vi = yC,, where now 

5 = E4b(z -  l), 6 = 3 E - W .  
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Again, this is the largest E ,  so that the small-inertia restriction is R < Etb-9 for 
stage 3. The boundary conditions (5) now give the ordinary differential equations 

2 4  a2# i /ap  - a#& = - aC, . 
The side layer is separated from the Ek layer at x = 1 by an El layer, which matches 
the non-zero values of ui in the side layer a t  5 = 0 and satisfies the boundary conditions 
(6), provided wi = 0 in the side layer at 5 = 0. Thus, the boundary conditions on $+ 
are conditions (Qa,  b, c ,  d ) ,  while the no-slip conditions (9e) are relaxed. 

Following the same procedure, we obtain 

Pr, = I -D+DP,  q51 = -2aDD'pP, 

where P = exp ( p ) ,  and p = 245. The functions 

u,/D = 24P, u,/aDD' = - @(I + p )  P 
are universal-profile functions ofp alone. The inertialess velocity uo is positive for all 
g, while u1 is negative for 0 > 5 > - 0.707 and positive for 5 < - 0.707. 

4. Side layer 
Calderon & Walker (1977) present the inertialess solutions, q40, uo, vo and w,,, for the 

side layer for each of the first three stages, and only the inertial perturbations, $1, ul, 
v1 and wl, are presented here. The definition of 5 for the side layer for each stage is 
the same as that given in 9 3 for the intersection region for the same stage. 

For stage 1 ,  equations ( 2 )  give 

u1 = a$,/ac, v1 = - y a4$51p54  + Y aL/a5, 

w1 = 8'#1/8c3 - a$,/aX - L, 8 = RE-Pb), 

L = uo auo/ax + wo auo/ag, 

(13a, b )  

(13c9 d )  

f l 3 e , f  1 
where 

x = bx. 

The boundary conditions (5) now give an ordinary differential equation governing #,, 
84+1/8[4 + (a + X)-1 a#,/a[ = aL/a[. 

Since the total flow required by the condition ( 3 )  is taken care of by uo, the net flow 
due to ul must be zero. In  addition, the solution must satisfy the conditions (6) and 
( 9 b ) .  The inhomogeneous term is determined from the solutions of Calderon & Walker 
(1977). Combining particular and homogeneous solutions to take care of the inhomo- 
geneous term and these conditions, we obtain 

where 
$1 = x)%f1[f2 +f3-&f1(4f4 + 5)i, 

fl = exp (P),  fa = cos ( 3 h  

f 3  = 34sin (3*p), p = *(a+X)+[ .  

The rescaled axial velocities 

U, = ( a + ~ ) + u , / 4 a  = -f1f3, 

ul = 7(a + ul/16a2 = fir!!?, - f 3  -fl+ ikftf3dfZ +f3)1 
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.-0.2 c 
FIGURE 4. Axial velocity for the side layer for stage 1, where the inertialess velocity V,,, the 

inertial perturbation velocity U, and the boundary layer co-ordinate p have been resealed. 

depend only on p,  and these universal velocity profile functions are plotted in figure 4. 
The inertialess flow consists of a strong forward jet adjacent to the wall 

a weak backward jet beyond the wall jet ( -  3-63 < p < - 1.81), and a very weak 
forward jet adjacent to the stagnant core ( -  5-44 < p < - 3.63). The inertial per- 
turbation velocity resembles the inertialess velocity, except that the corresponding 
zeros are closer to the wall. The perturbation velocity U, reaches its minimum value 
of - 0.19 a t  approximately p = - 1.8 where U, = 0, while U, reaches a local maximum 
of 0.026 a t  approximatelyp = - 3.6 where again U, = 0. The addition of small inertial 
effects to the inertialess flow increases the forward velocity near the wall, moves the 
zeros in the axial velocity toward the wall and increases the maximum magnitude of 
the velocity gradient. 

For stage 2 ,  equations ( 2 )  again give equations (13a, b,  c, e ) ,  where now E = R E 4  
and X = E h .  The inertial perturbations in the side layer and in the Ekman layers a t  
y = f ( a + a X )  are comparable, so that the conditions (5) do not hold for this case. 
Equations (1)  are written in two resealed, right-handed Cartesian co-ordinate systems, 

( -  1.81 < < 0 ) ,  
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N ,  fl, T, one system for the top and the other for the bottom. The N co-ordinate is 
measured perpendicular to the wall, into the fluid, and is stretched by E d ;  5 is the 
same as the side-layer fl; the T co-ordinate is measured along the wall in the Tx 
direction on the top and bottom, respectively, and is compressed by Ei .  In  the Ekman 
layers, w, and vT0 are O(Ea) ,  while vNO and 9, are O( 1). The N component of equation 
(1 b)  indicates that $1 is independent of N and is therefore given by values in the side 
layer. The 5 and T components of equation (1 b )  give 

a2WJaN2 T v T l =  a$,/ac+ vN0 awo/aN + W, aW,/ac, 

a2VTl/aN2 +_ w1 = vN0 aV,/aN + W, avT,/ac, 
where vNo, w, and vT0 are obtained from the well-known inertialess Ekman layer 
solution (Howard 1969, p. 62). The boundary conditions are 

w1 = vT1 = 0 at N = 0, 

wl+O, v T 1 + T ~  as N + a .  

Solutions are found by combining particular and homogeneous solutions, but are not 
presented here. Equation (1 a )  now gives an expression for avNl/aN. We integrate 
this expression from N = 0, where vN1 = 0, to N = 00, to obtain modified Ekman 
conditions for the side-layer variables, 

2 4 0 1 ~ ~  T 23v1 = aul/afl- 0.35 a(uo au,/afl)/afl a t  y = +_ (a + ax). 
The modified Ekman conditions and the solutions (13a, b,  c, e )  give an ordinary 

differential equation governing #1, 

(U + ax) a4$1/af14 - 2 4  a2$1/af12 + a a$,/afl = (U + ax) aL/ag 
- 0-35(2)4 a ( ~ ,  au,/ag)/ag. 

The solution must satisfy conditions (6) and (9b), and the net flow owing to u1 must be 
zero. The inertialess solutions (Calderon & Walker 1977) and the inertial perturbations 
are different for X X ,  = a(01t - a2)/a. The inertialess solutions are similar to those 
in the intersection region for stage 2, except that s* and t* in equations (1 1) twd (12) 
are now functions of X, rather than constants. As a result, the term au,/aX in L 
makes the inhomogeneous term in the equation governing $1 quite complex. The 
rather long and complicated solutions for $1 for various relationships between X and 
X, and between 01 and a, are not presented here, but are presented in El-Consul's 
thesis (1978, pp. 119-123). 

For stage 3, equations (2) again give equations (13a, b,  c, e, f), where now 

8 = RE-W. 

However, when the inertialess solution (Calderon & Walker 1977) is introduced into 
equation (13e),  we find that L = 0. Therefore, there is no inertial perturbation due 
to L, and B is smaller than R E - V .  The first non-zero inertial perturbation in the side 
layer is due to uo aw,/aX + w, aw,,/aC and gives E = Rb2. It turns out that the inertia 
perturbation in the El  layer, separating the side layer from the E* layer a t  z = 1, 
is much larger than that in the side layer. Since we are interested in the largest pertur- 
bation in the flow-carrying or adjacent regions for each stage, we will treat the E i  
layer, rather than the side layer, for stage 3. 
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Since Calderon & Walker (1977) only present inertialess solutions for flow-carrying 
regions, both inertialess solutions and inertial perturbations are presented here. For 
the Ef layer a t  z = 1 and for stage 3, the orders of magnitude of the inertialess u, v 
and w axe E a b ,  E d b  and b, respectively, while 

$ = 2 4 ~  + X)- l -  1 + Edb(#o + €$I), 
where X = bx, again. The equations (2) give 

where 

The solutions must match the side-layer solutions, i.e. 

u 4 + . ( a + X ) K ,  W i + K  88 q+-m, 

and must satisfy the boundary conditions (6) at 7 = 0. 

differential equation governing #o is 
The Ekman conditions (5) hold for the inertiaIess solution, so that the ordinary 

2 + ~  + X )  a4#0/@4- a2#,/@2 = 0. 

The solution which satisfies the boundary conditions on the inertialess variables is 

where 
#o = Qo + 2b(a  + X)+  (m - H), 

M = exp (m), m = 7/2a(a + X ) # ,  

and Qo is the O ( E 4 b )  # in the side layer, evaluated at  t; = 0, and is a function of X 
alone. 

The inertial perturbations in the E f  layer a t  z = 1 and in the adjacent Ekman 
layers a t  y = & (a + X) are comparable, so that the conditions (5) do not hold for the 
inertial perturbation in the E f  layer. The derivation of modified Ekman conditions 
parallels that for the side layer for stage 2. Now, 7 replaces c, T is compressed by b, 
vTo and wo are O ( E t b ) ,  and vNO and #o are O ( E 4 b ) .  When written in terms of uo and 
u1 in the Ea layer, evaluated at  y = 5 ( a + X ) ,  the inertialess solutions and inertial 
perturbations in the Ekman layers are identical to those for stage 2. The modified 
Ekman conditions are now 

T .v, = aul/@ - 0.35 a(uo auo/@)/aq a t  y = 5 (a + X ) .  

These conditions and equations (14a, b, c) give the equation governing 

2 a ( ~  + x) ~ # , / @ 4  - ay1/aq2 = *(a + x )  aQJ@ - 0.35 a(u, au,/aq)/aq. 

When the inertialess solution is introduced into the right-hand side of this equation, 
it turns out that the second term equals 0.35 times the first, so that the only effect of 
the Ekman-layer inertial perturbations is to reduce the Ef layer inertial perturbation 
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FIGURE 5. Axial velocity for the E* layer between the side layer and the wall at z = 1 for 
stage 3, and for the E* layers between the far core and the sides at z = +_ 1 for stage 4. The 
inertialess velocity U,, the inertial perturbation velocity U, and the boundary layer co-ordinate 
m have been rescaled by different factors for stages 3 and 4. 

by a factor of 0-65. Particular and homogeneous solutions are combined to take care 
of both the inhomogeneous term and the boundary conditions. The result is 

$1 = @I+ 2.6aaM(lll + 1 - 3m)/3(a + X)', 

where 0, is the O(RE-lb2) q5 in the side layer, evaluated at 6 = 0, and is a function of 
X alone. Since the side layer is inertialess to this order of magnitude, the O(RE-W) 
side-layer solution is an inertialess solution with u < 0 for all 5 and with a negative 
total flow which exactly cancels the positive total flow due to u1 in the E i  layer, so 
that the total flow of 4a carried by u, in the side layer is not changed. 

The rescaled axial velocities 

uo = ( a + X ) u o / 2 b  = 1 - M ,  

U, = 24(a + X ) j  u,/0-52a2 = y M ( M  - 1 - #m), 

depend only on m, and these universal velocity profile functions are plotted in figure 5. 
The factor of 10 is included in the definition of U, so that U, and U, can be plotted with 
the same scale. The inertial perturbation increases the forward velocity throughout 
the Ea layer and increases the velocity gradient near the wall ( -  1.6 < m < 0) .  

5. Stage 4: b = pE* 
As b -+ O(E*), the thickness of the free shear layer 8, + O(l) ,  and this layer evolves 

into the near core with all O(1) derivatives. Calderon & Walker (1977) present the 
second-order, elliptic partial differential equation and boundary conditions governing 
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$o(z, z) ,  and Calderon (1976) presents separation-of-variable solutions for this boun- 
dary value problem. 

For the near core, equations (2) give 

U, = a$,/az, V ,  = YS, 

W, = -a$,/ax, e = RE-+, 
where 

s = a(%, auo/ax + w, a ~ o / a z ) / a z  - quo awo/ax + w0 aw,/az)/az. 

This is the largest E for this stage, so the small-inertia restriction is R < E )  for stage 4. 
The Ekman conditions (5) give the equation governing $,, 

a2$,/aX2 + a2$,/aZ2 - 2 4 , ~  a$,/az = - 2JaS. 

Since the inertial perturbations in adjacent subregions are much smaller than that 
in the near core, the boundary conditions are 

0 at z =  + 1  andat  x =  0, 

$,+O as x 3 m .  

When the inertialess variables (Calderon & Walker 1977) are introduced into the 
expression for S,  it becomes 

s = 24p((a@,/a~) a 2 # o / a ~  az - (a$o/ax) a2$o/az2), 

where $o is given by the sum of separation-of-variable solutions (Calderon 1976). 
The inhomogeneous term in the equation governing involves products of i nh i t e  
series, and it appears that a numerical analysis, such as a relaxation scheme, would 
be required to solve for 4,. Such a numerical analysis has not been carried out. 

As b -+ O ( E J ) ,  the thickness of the side layer for stage 3, 8, + O(l) ,  and this layer 
evolves into the far core. When we introduce the inertialess solution for the far core 
(Calderon & Walker 1977) into equations (2), we find that the leading inertia term 

uo auo/ax + w0 auo/az = 0, 

where X = Eix for stage 4. The first non-zero inertia term gives e = RE. It turns out 
that the inertial perturbations in the E* layers at z = _+ 1 are much larger than that 
in the far core. Therefore, we treat only the inertial perturbations in the E* layers 
that separate the far core from the E* layers a t  z = k- 1.  

In the E* layers, the orders of magnitude of the inertialess u, v and w are 1, E* 
and EJ, respectively, while 

where 
$ = g - coth (e) + + e$J, 

e = d p ,  g = a(a +pX)- l  cosech (e) exp ( & e) 

for the layers at z = & 1. Equations (2) again give equations (14a, b, c, f, g, h),  while 
equations ( 1 4 4  e, i) are replaced by 

e = R E a ,  W, = pg/(a+pX),  

7 = E - t ( z ~  I), at z = I, 
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respectively. Matching the far-core solution gives the boundary conditions 

u i + * ( a + p X ) ~ ,  w i + K  as 7-f TCO, 
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for the layers at z = & 1, while the solutions must also satisfy the boundary conditions 
(6) at 7 = 0. The analysis is the same as that given in Q 4 for the E i  layer a t  z = 1 for 
stage 3.  The results are 

$0 = qx, f 1) * 2*pg(a + p m +  (m -MI, 

= a 1 ( X ,  & 1) + 0.66pag2M(M + 1 - 3m)/3, 

for the layers at z = 2 1, where now 

m = 7 / 2 f ( a  +pX)*, M = exp (m), 

while a 0 ( X ,  z )  and a 1 ( X ,  z )  are the O(Ef) and O(R) terms in the asymptotic expansion 
for $ in the far core. 

The rescaled axial velocities in the E i  layers at z = -t 1 

? & = u o / * p g = l - M ,  

Ul = 2a(a +,uX)+ ~ ~ / 0 . 1 3 , ~ g 2  = %QM(M - 1 - am) 2 

are the same universal velocity profile functions of m as those given in Q 4 for the E )  
layer a t  z = 1 for stage 3 and plotted in figure 5.  For the E )  layer at z = 1, Ul > 0 
and the remarks given in the previous section apply here as well. However, for the 
Ei  layer at  z = - 1, U. < 0, so that the inertial perturbation velocity decreases the 
forward inertialess velocity throughout the layer and decreases the velocity gradient 
near the wall ( -  1.6 < m < 0). 

6.  Concluding remarks 
The present analysis is the beginning of a bridge between inertialess solutions for 

arbitrary geometry and inertial-viscous solutions for restricted geometry. At this 
point, direct comparison of the present solutions and any inertial-viscous solutions 
is not possible because the geometries are different. Walker (1975) showed that the 
solution for any variable-area, rectangular duct with symmetrically diverging or 
converging top and bottom or sides can be constructed from the solutions for the 
prototype considered here, so that the latter contain all of the significant phenomena 
in variable-area, rectangular duct flows. The objective here is to treat the prototype 
for all possible geometries, here represented by b, with the assurance that flows are 
similar in any variable-area, rectangular duct. Extensions are planned to cover 
inertial-viscous solutions in the prototype for various values of b and to cover inertial 
perturbations to inertialess flows past bumps or ridges with h Eh in constant-area, 
rectangular ducts. 

The ratio of each inertial perturbation to the corresponding inertialess variable in 
the side layer, for stages 1 and 2 ,  and in the Ef layers, for stages 3 and 4, approaches 
zero, a t  lea& as fast as X-1, as X -+ CO. Therefore, inertial effects do not accumulate 
over long duct lengths and do not become significant far downstream. Instead, the 
small inertial effects become even smaller far downstream. 



434 J .  S. Walkev and A .  M .  El-Consul 

The present solutions are for flows with diverging top and bottom. The solutions 
for flows with converging top and bottom are obtained from the present solutions by 
simply changing the direction of flow, i.e. by changing the right-hand side of equation 
(3) to -4a. The result is simply a change of sign for some variables, while others 
remain the same. 
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